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EXECUTIVE SUMMARY 

This report proposes acceptability criteria for validating the modeling and 
simulation of a generic tracking radar. The validation process is limited to the 
comparison of a set of Monte Carlo realizations of the simulated time series of ju- 
diciously selected validation metrics with single discrete-event observations made 
by the actual system. Our approach is based on a statistical hypothesis test. The 
two hypotheses are (1) the hypothesis that the simulation is consistt nt with actual 
system performance the null hypothesis, Ho. and (2) the hypothesis that the sim- 
ulation is inconsistent with actual system performance the alternative hypothesis, 
H\. The proposed procedure is cognizant of the so-called model maker's risk, a, and 
the so-called model user's risk. J. corresponding to the probabilities of Type I and 
Type II errors, respectively. For each validation metric, we count the number of sam- 
ples of the observed time series that fall outside of bounds prescribed by the Monte 
Carlo realizations of the simulated time series. Subsequently, if the number of ob- 
served samples that are outside of the simulation bounds are abort a pre-computed 
rejection threshold. 7, computed based on a pre-specified model maker's risk. o. we 
declare the simulated time series of the particular validation metric- under scrutiny 
as inconsistent with the observed time series. Any statistical dependence present 
in the time series of the validation metrics is accounted for in the computation of 
the rejection threshold. "). The number of Monte Carlo realizations also impacts the 
computation of 7. 

Results are summarized in a so-called scorecard. For each discrete-event ob- 
servation, the scorecard contains a list of rejection indices for the different vali- 
dation metrics, with each rejection index—expressed as a number between 0 and 
100—denoting the ratio of the samples of the observed time series of the associated 
validation metric that are outside of the simulation bounds. Normalized rejection 
thresholds for the different validation metrics—also expressed as numbers between 
0 and 100 are also included in the scorecard. The scorecard reveals any cross- 
correlation that exists among select validation metrics. Due to the unavailability of 
the probability density function of the observed behavior, which prevents us from 
computing the model user's risk. /j. we require that a faintly of normalized rejec- 
tion thresholds, corresponding to different values of the model maker's risk. o. be 
included in the scorecard. Using sound judgement and common sense, a validation 
agent may apply the scorecard to accept or reject a given modeling and simula- 
tion product. The scorecard ha.s the added advantage of serving as a diagnostic 
tool     thus aiding in modeling and simulation improvement. 

111 
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1.    INTRODUCTION 

The best way to test the performance of a sensor is to repeatedly conduct experiments using 
that sensor. For example, in the case of a tracking radar, we would collect measurements originating 
from a known target and. using the tracking filter implemented within the radar software, form 
a track based on those measurements. We would then compute the target state estimation error 
with reference to the target's true state known a priori and evaluate the performance of the 
tracking filter using the tried and true statistical methods discussed in classic textbooks such as [1], 
While optimal, such experiments are. unfortunately, often not cost-effective. Worse, they are almost 
never repeatable. For example, we cannot expect the environment in which the sensor operates 
to remain constant varying weather conditions being a favorite anecdote. Therefore, it is often 
more economical to operate within a simulated environment, wherein experiments can be tightly 
controlled and repeated ad nauseam. In order for the simulation to be trusted as a proxy for 
the observed behavior, we need to have a way of evaluating the accuracy of the models enabling 
thi' simulation. The discipline of modeling and simulation (M<kS) verification, validation, and 
accreditation (VV<kA) is as much an art form as science. A lucid and sobering account of many 
remaining M<kS VVk'A challenges can be found in [2]. 

In this report, we focus on validating the modeling and simulation of a generic tracking radar. 
The proposed validation criteria can be extended to other radar functions as well. For rigor's sake, 
we abide by the following definitions from [3]: 

• Verification: "The process of determining that a model implementation and its associated 
data accurately represents the developer's conceptual description and specifications." 

• Validation: "The process of determining the degree to which a model and its associated 
data are an accurate representation of the real world from the perspective of the intended 
uses of the model." 

• 

• 

Accreditation:   "The official certification that a model, simulation, or federation of models 
and simulations and its [sic] associated data are acceptable for use for a specific purpose." 

Acceptability Criteria:  "A set of standards that a particular model, simulation, or feder- 
ation must meet to be accredited for a specific purpose." 

The purpose of this report is to address specifically the design of acceptability criteria appropriate 
for validating the modeling and simulation of a generic tracking radar following the simulation vali- 
dation guidelines provided in [4]. The techniques we propose would directly benefit the "validation 
agent." who. according to [3]. is "[t]he person or organization designated to perform validation of 
a model, simulation, or federation of models and/or simulations and the associated data." 

In an effort to devise effective acceptability criteria, we aim to satisfy three objectives. First, 
we note the crucial point that the modeling and simulation product must be able to replicate the 
sensor's behavior irrespective of its performance. In other words, if the sensor is expected to perform 
poorly under certain conditions, then we would like the modeling and simulation of the sensor to 



replicate the same poor performance—otherwise, for testing purposes, we would not be able to rely 
on the simulation as a true surrogate for the sensor. Thus, the model maker must not confuse 
sensor performance with sensor performance replication. Unfortunately, in our experience, many a 
good model maker has fallen prey to an inability to make this important distinction, a phenomenon 
we refer to as the model maker's fallacy. Such a fallacy tends to occur more frequently when the 
model maker is also the equipment maker. 

Our second objective is to ensure that the acceptability criteria for validating the modeling 
and simulation of a given sensor are "anchored" to the behavior observed by that sensor such 
as observations of targets of opportunity in the case of tracking radars. Specifically, we aim at 
validating the repeated behavior exhibited by a given modeling and simulation product with a 
single discrete-event observation—say, of a single satellite pass in the case of a tracking radar— 
through the use of sound statistical techniques. Unfortunately, we almost never have access to the 
probability distribution functions of uncertainties affecting the observed behavior of the sensor. 
Nevertheless, we must devise criteria that minimize the risk to the model user—or more precisely 
the validation agent who is responsible for passing or failing a given modeling and simulation 
product. 

Our third, and possibly most important, objective is that the requisite validation metrics 
should actually aid in improving the modeling and simulation of the sensor. In other words, we 
seek to devise a set of acceptability criteria that not only would allow us to pass or fail a given 
modeling and simulation product, but also, in case of failure, would serve as a diagnostic tool to 
help us identify the sources of failure. By satisfying this objective, the validation agent will be able 
to make a more informed decision about the overall performance of the modeling and simulation 
product. When acceptability criteria are tied to "'physics," it becomes easier to identify statistical 
outliers, and their impact on the simulation validation process can thus be minimized. 

Our treatise begins with an outline of a statistical decision theoretic method to modeling and 
simulation validation in Section 2. Here, we discuss risks and benefits from the point of views of 
the model maker and the model user. A decision theoretic approach to modeling and simulation 
validation is by no means original (see [5] for a summary of approaches). Of particular value is 
an extension of the statistical testing procedure for the equality of the power spectral densities 
of multiple short memory time series devised by [6] to modeling and simulation validation. The 
modeling and simulation validation approach proposed in this report is different and unique in that 
it combines results from a specific statistical hypothesis test with physical constraints imposed by 
judiciously selected validation metrics to allow for an informed and efficient decision making process 
with the added bonus of providing a road map for modeling and simulation improvement. 

In Section 3, we elaborate on how to account for any statistical dependence that is present in 
the time series of the validation metrics relevant to the modeling and simulation of a tracking radar. 
In this section, we also answer the often-asked question: "How many Monte Carlo realizations are 
sufficient to validate a given modeling and simulation product using the method proposed in this 
report?" We list the validation metrics relevant to the modeling and simulation of a tracking radar 
in Section 4. Via a controlled numerical experiment, we examine the effectiveness of the proposed 
method in Section 5. A summary of our results is given in Section 6. 



2.    STATISTICAL HYPOTHESIS TESTING 

We can formulate the simulation validation process as a statistical hypothesis test [5]. We 
consider two hypotheses. We define the null hypothesis. Ho. to be the hypothesis that the simulation 
is consistent with actual system performance, while we define the alternative hypothesis. H\. to 
be the hypothesis that the simulation is inconsistent with actual system performance. Therefore, 
we would accept a valid simulation when Ho is true, and we would reject an invalid simulation 
when H\ is true. However, due to the statistical nature of the problem, two types of decision error 
can arise. The so-called Type I error would correspond to rejecting a valid simulation, while the 
so-called Type II error would correspond to accepting an invalid simulation. In the modeling and 
simulation literature, the probability, a. of Type I error is often referred to as the model makt r's 
risk, and the probability.  1 of Type II error is often referred to as the model user's risk [5]. 

The validation problem lies in '•detecting" a simulation that is inconsistent with actual system 
performance. For an optimal solution, one could, in theory, invoke the Neyman-Pearson theorem 
to devise a "detector" that minimizes the model user's risk. 6. for a given model maker's risk, 
a [7]. In other words, the model maker's risk. a. is treated as a parameter of the decision problem; 
it is used to compute a "rejection threshold." ->. for an appropriate "test statistic" of a chosen 
"validation metric." If the test statistic is observed to exceed the rejection threshold, then, for the 
particular validation metric under consideration, the simulation is deemed to be inconsisU nt with 
actual system performance. When there are more than a single metric to be considered, correlations 
among the metrics must be taken into account. For modeling and simulation of tracking radars. 
validation metrics come in the form of time series—as opposed to single scalars. Hence, temporal 
correlations present in the time series must also be taken into account. A list of the metrics proposed 
for the validation of a given tracking radar simulation is given in Table 1. Section 4. 

The computation of the likelihood ratio needed for the design of a Neyman-Pearson detector 
demands an a priori knowledge of the probability distribution functions (PDFs) of both the simula- 
tion and the actual system results at least to within a normalizing constant. Generally, we do not 
have access to an accurate representation of the PDF of actual system results. Due to the nonlinear 
nature of the- models and the presence of a large number of random contributors, we often have 
no choice but to resort to Monte Carlo sampling techniques to derive PDFs numerically. While 
simulations are repeatable. experiments involving actual systems might not be. This is certainly 
the case for experiments involving tracking radars. Hence, we have no choice but to treat the PDF 
of the actual system results as unknown. Fortunately, we can still compute a rejection threshold. 
-). based on a given model maker's risk. a. since the computation of 7 depends only on the PDF of 
the simulation results [7]. which can in general be estimated from a histogram of the Monte- Carlo 
samples. However, since we do not have access to the PDF of the actual system results, we cannot 
guarantee the model user's risk, ft, to be a minimum. 

This report presents a procedure, inspired by the aforementioned decision theoretic concepts, 
in which multiple Monte Carlo realizations of time series corresponding to key validation metrics 
obtained by running the simulation software multiple times—are compared with results obtained by 
the actual system during a single discrete-event observation. In order to apply this procedure, we 
begin by counting, for each validation metric, the number of times that independently sampled values 



of the corresponding time series observed by the actual system fall outside of bounds prescribed 
by the simulation. The simulation boundaries are set to the minimum and maximum values of the 
Monte Carlo realizations of the time series valid at each time index of the observed values. We 
could have set the simulation boundaries to n standard deviations about the mean of the Monte 
Carlo realizations. However, this approach would be accurate only for validation metrics that have 
a Gaussian probability density function. Unfortunately, many of the validation metrics, such as 
the total position error listed in Table 1. Section 4. have probability density functions that are 
significantly different from the Gaussian PDF. We thus opt for setting the simulation bounds to 
the minimum and maximum values of the Monte Carlo realizations in lieu of setting bounds based 
on explicitly derived PDFs. 

The simulation is declared to be inconsistent with actual system performance if the number 
of times that independent samples of the observed time series fall outside of the simulation bounds 
exceeds a pre-computed rejection threshold, 7. Since the samples are chosen to be statistically 
independent, the outcome of this process can be modeled with a binomial random variable, with 
cumulative mass function: 

PT{x<n} = £(N^Jpk(l-P)Ni-k- (1) 

The form of the cumulative mass function depends on the number. iV,. of independently sampled 
values of the time series associated with the validation metric under scrutiny and on the probability. 
p, that a single sample of the observed time series falls outside of the simulation bounds. As a 
result, the mapping of the model maker's risk, a. to the rejection threshold, 7, also depends on 
these parameters. 

At the time of simulation validation, the number of Monte Carlo trials is invariant; that is, the 
validation agent is given a fixed set of Monte Carlo realizations of the time series of the validation 
metrics, along with a single time series observed by the actual system. From the number. NMC, 
of Monte Carlo trials, we can easily show that the probability, p, that a single sample of the time 
series of a given validation metric observed by the actual system falls outside of bounds prescribed 
by the Monte Carlo realizations is given by the simple expression 

"=»^-r (2) 

In order to judge whether the entire history of the sampled values of the observed time series are 
outside of the simulation bounds, we need to know something about the statistical dependence of 
those samples. In other words, we must account for any temporal correlations present in the time 
series of the scrutinized metrics in order to perform a meaningful, fair, and robust test. In the 
following section, we give a detailed account of the impact of temporally correlated time series on 
the simulation validation procedure. However, before handling correlated time series, we must first 
address an apparent concern with regard to a simulation validation procedure that is based on 
bounds prescribed by the simulation itself. 



2.1     THE LAZY MODEL MAKER'S PARADOX 

One might be tempted to think that the passing or failing of a given modeling and simulation 
product based on bounds set by the simulation itself would allow the model maker to devise a 
model that could be guaranteed to be consistent with all observations at all times. Consider the 
following gedankenexperiment. Given the modeling and simulation validation procedure outlined 
above, a lazy model maker, in an attempt to guarantee success, may naively decide to broaden 
the probability density functions of model uncertainties impacting the simulation output. This 
way, the time series of the validation metrics observed by the actual system would always fall 
within the simulation bounds- or so the model maker hopes. For example, in the case of a tracking 
radar, in older to avoid the explicit modeling of unanticipated systematic errors, such as temporally 
correlated measurement errors induced by the random heaving and tilting motion experienced by 
a shipboard radar, the model maker may simply decide to reduce the signal-to-noise ratio driving 
the measurement error variances. This way. temporally varying biases would be buried in noise, 
and the model, in a way, is guaranteed to be accepted by the validation agent. However, by doing 
so. if the model maker is also the equipment maker, he or she would be admitting that his or 
her equipment's performance is at best subpar. After all. a radar advertised through behavior 
demonstrated via modeling and simulation as having a poor signal-to-noise ratio would not be a 
desirable item to own. It follows that such a strategy would prove unwise if the model maker is 
also the equipment maker who wishes to sell the equipment. Thus, the model maker lias no choice 
but to properly account for all sources of errors, including time-varying biases. 
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3.    CORRELATED TIME SERIES 

The number. N,. of independent samples in the time series of a validation metric plays an 
important role in the decision algorithm presented in the previous section.   It can be estimated 
approximately by dividing the total duration. T. of the time series by the correlation time. r. of 
the time series: 

T 
TV,--. (3) 

r 

In other words, if we resample the time series at a rate of approximately 1/r. then the X, resulting 
samples are statistically independent. The correlation time. r. can be obtained by employing any 
of the classical techniques discussed in the vast literature on time series analysis. For example, we 
could estimate r from the autocorrelation function of the time series. The correlation time would 
then correspond to the point in time when the autocorrelation function falls, say. to l/( times 
its maximum value at zero delay. Alternatively, we could estimate the correlation time from the 
power spectral density (PSD) of the time series, which is defined as the Fourier transform of the 
autocorrelation function. In that case, the correlation time. r. would correspond to the inverse of 
an appropriately defined "roll-off frequency.'" v = 1/r. of the PSD. What if there are more than 
a single correlation time? In that case, we would resample the time series at a rate equal to one 
over the longest correlation time. That way. the resulting samples are guaranteed to be statistically 
independent. 

For a stochastic time series. i,\ it can be shown that the PSD can be obtained directly from 
the Fourier transform, ty. of the time series through the relation [8]: 

PSD(/)= lim   LE[|*(/)|
2
1. (4) 

I —>OC  i L J 

where / is the frequency, and E() denotes the expected value of (•). In the case of uniform sampling, 
the Fourier integral can be approximated by the discrete Fourier transform (DFT) [9]: 

*(/„) ~ A J2 Wk) exp [    N    )•     n = - - - - 1, (5) 

where A denotes the uniform sampling interval, and N is the total number of samples. The DFT for 
a uniformly sampled time series can be implemented using the efficient fast Fourier transform (FFT) 
algorithm [9]. Hence, it follows that, for large T, we can approximate the PSD by 

PSD(/„)~i 
ilixkn A]>>(f,)exp(- 

fe=0 v 

TV TV 

"--2 2-L (6) 

For non-uniformly sampled time series, more sophisticated techniques, such as the Lomb peri- 
odogram method [10]. must be considered for the estimation of the PSD. 

For illustration, we consider a time series prescribed by a first-order Gauss Markov pro- 
cess  [11].    The theoretical expression for the PSD of a first-order Gauss Markov process with 
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Figure 1. A realization of a first-order Gauss-Markov time series, %l>, with standard deviation aGM = 
250 units and correlation time TGM = 100 s, and its power spectral density (PSD). The smooth curve in the 
bottom, panel is obtained from the theoretical expression for the PSD of a first-order Gauss-Markov process 
with similar parameters. The dashed vertical line indicates the "roll-off frequency" of the PSD. corresponding 
to 1/TQM = 0.01 Hz. 

standard deviation aGM and correlation time rGM = 1/VGM is given by [11] 

PSDGM(/) = 
7T(/2 + "GMJ' 

(7) 

A realization, ip, of the first-order Gauss-Markov time series with CTGM = 250 units and rGM = 10 s 
is shown in the top panel of Figure 1. The time series, ifr, can represent any validation metric. Thus, 
for convenience, we have chosen vj to be dimensionless. The PSD computed directly from the time 
series, using Eq. (6), along with the theoretical PSD computed from Eq. (7) is shown in the bottom 
panel of Figure 1. The theoretical value of the inverse of the correlation time. vGU = 0.01 Hz, is 
shown with the dashed vertical line. It follows that if we resample the time series shown in the 
top panel of Figure 1 at a rate of 0.01 Hz, then the resulting sequence will correspond to a white 
Gaussian noise sequence. 

To demonstrate how temporal correlations can be taken into account, we consider the hy- 
pothetical scenario depicted in Figure 2. Here, we are given a set of NMC = 10 Monte Carlo 
realizations, shown in black, of the time series of a generic validation metric, tp, described by a 
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Figure 2. Ten Monte Carlo realizations of the time series of a generic validation metric, L\ shown in 
black, and a single time series of the validation metric obsen>ed by the actual system, shown in blut. Tin 
simulated and the observed time series are described by the same first-order Gauss Markov process, with 
standard deviation GGM = 250 units and correlation time TGM = 100 s. The simulation bounds, prescribed 
by the minimum and maximum values of the 10 Monte Carlo realizations, are shown in red. Th< dashed 
vertical lines separate the so-called correlation segments. 

first-order Gauss Markov process with aGM = 250 units and rGN1 = 100 s. Furthermore, we con- 
sider the case when the time series observed by the actual system, shown in blue in Figure- 2. is 
described by the same first-order Gauss Markov process. In other words, the null hypothesis, HQ, 

corresponding to the hypothesis that the simulation is consistent with actual system performance, 
is the true hypothesis. Thus, for our example, we have simply generated NMC + 1 = 11 Monte 
Carlo realizations of the same first-order Gauss-Markov process and have arbitrarily labeled one of 
them as the time series observed by the actual system. However, due to the random nature of the 
problem, there is always a chance that we may decide that the alternative hypothesis. H\. corre- 
sponding to the hypothesis that the simulation is inconsistent with actual system performance-, is 
the true hypothesis. In that case, we would reject a valid simulation. In binary hypothesis testing, 
this type of error is referred to as the Type I error, and its probability, referred to as the model 
maker's risk. a. in the modeling and simulation literature, serves as a parameter of the decision 
algorithm. 

In order to determine the number, N,. of independent samples, we must first estimate- the 
correlation time. r. of the time series, </\ Subsequently, the number of independent samples can be 
obtained from Ecj. (3). Since the validation process is anchored to the simulation, the correlation 
time. T. ought to be computed from the simulated time series, instead of from the time- series 
observed by the- actual system. We can estimate the correlation time. r. by using any of the 
techniques discussed earlier.  Since the simulated time series are drawn from the same probability 



distribution function, we can reduce the error in estimating the correlation time by combining 
results obtained from the independent processing of the individual time series. For example, if we 
decided to estimate the correlation time, r, from the PSD. then the PSDs computed separately 
for each of the NMC = 10 Monte Carlo realizations shown in Figure 2—say using Eq. (6)—can be 
averaged to result in a smoother estimate of the PSD. thereby reducing the error in estimating the 
roll-off frequency, v = 1/r. 

Once we have estimated the correlation time, r, from the simulated time series, we can divide 
the time interval including both the simulated and the observed time series into so-called correlation 
segments, each of duration r. The correlation segments are shown separated with dashed vertical 
lines in Figure 2. For the simulated time series, the samples within each segment are correlated, 
whereas samples selected from different segments and separated by at least one correlation time, 
r, are statistically independent. If the true hypothesis is the null hypothesis, HQ, corresponding 
to the hypothesis that the simulation is consistent with actual system performance, then the same 
behavior is obtained for the observed time series. In other words, in case of Ho being the true 
hypothesis, if, for any time series (whether simulated or observed), we pick a sample from each 
correlation segment, then, as long as the selected samples are as least one correlation time apart, 
the resulting sequence will be a white Gaussian noise sequence. 

The simulation bounds, prescribed by the minimum and maximum values of 10 Monte Carlo 
realizations, are shown in red in Figure 2. Given a sequence of r-separated samples of the observed 

time series and simulation bounds valid at the times of the selected samples, we count the number 
of times the samples fall outside of those bounds. Next, we compare the number of samples 
that fall outside of the simulation bounds with a rejection threshold. 7. The rejection threshold is 
determined from the number. JV,, of independent samples; the probability, p. of an arbitrary sample 
falling outside of the simulation bounds; and the model maker's risk, a. If the number of r-separated 
samples falling outside of the simulation bounds is smaller than the rejection threshold, 7, then we 
declare the simulation to be consistent with actual system performance. If the true hypothesis is 
the alternative hypothesis. H\. then there is no reason to expect the observed time series to behave 
in a way predicted by the simulation. Specifically, resampling the observed time series at a rate 
of 1/r. where the correlation time, r, is estimated from the simulated time series, may not result 
in an uncorrelated sequence. However, this discrepancy can only add to the inconsistency between 
the simulation and actual system performance and would therefore not degrade the performance 
of the decision algorithm. 

The choice of which sample to pick as the starting point of the resampling process is somewhat 
arbitrary. For instance, we could choose to always pick the first sample in each of the correlation 
segments shown in Figure 2. Alternatively, we could haven chosen to always pick the second sample 
in each of the correlation segments, or the third sample, and so on. Once we have committed to a 
particular starting point, we may begin to wonder whether the ignored samples might have afforded 
any further utility. Also, what if our chosen starting point happens to produce a sequence that 
corresponds to a statistical outlier, thereby skewing the validation process, whereas had we chosen 
another starting point, might we have obtained a more normative sequence? One way to remedy 
such quandaries would be to consider all possible starting points: resampling the observed time 
series by picking the first sample in each correlation segment, followed by resampling the observed 

10 



time series by picking the second sample in each correlation segment, etc., until we reached the end 
of the correlation segments. We could then report our result based on an average of all possible 
cases, along with an appropriate confidence interval. While such an approach might present a 
viable solution, we opt for a simpler procedure. 

Instead of partitioning the data window into correlation segments and subsequently picking 
r-separated samples of the observed time series from each segment, we consider all samples instead; 
that is. we choose to ignore any correlation that may exist between the samples. Specifically, we 
examine whether any of all samples fall inside or outside of the simulation bounds. Of course, by 
doing so. we would introduce- an error, since the invocation of the binomial probability distribution 
function requires the samples to be statistically independent. However, if correlation effects arc1 

taken into account in the computation of the rejection threshold, 7, then, we argue, the effect of 
this error on the validation process will be innocuous. In other words, we would reach the same 
decision on the validity of a simulation had we incorporated the correlation effects in the averaging 
process discussed above. This method has the advantage of using all the available data without 
the need to resort to any complicated counting procedure or averaging. We therefore regard it as 
more practical. 

We illustrate the concept by employing a first-order Gauss Markov process modeling the time 
series of a generic validation metric'. All time series contain N = 1024 samples and are sampled 
uniformly at a rate of 1 Hz thus T = 1024 s. The correlation time is increased from rGM = 1 s 
to Tc\] = 1024 s in factors of 2. In other words, we start with a time series that can be regarded 
as a white Gaussian noise sequence, and we end with a time series that is more or less completely 
correlated, with correlation time equal to the duration of the time series. T. The standard deviation, 
rr(;M = 1 unit, is the same for all time series. We consider the following numerical experiment. For 
each correlation time, rGM, we are given a set of NMC Monte Carlo realizations of time1 series 
representing simulation results. We use these realizations to compute the simulation bounds. Also, 
from the number of Monte Carlo trials. ATMC, we compute the probability p given in Eq. (2). Next, 
we generate a set of 1000 first-order Gauss Markov time series representing results observed by the 
actual system. The set of 1000 time series have the same aGM and r<;N1 as the simulation; in other 
words, the true hypothesis is the null hypothesis. Ho. For each of the 1000 time series, we compute 
a so-called rejection index, p: 

P = %' x 100. (8) 

where Ar
ol„ is the number of observed samples that fall ontside of the simulation bounds. It follows 

that 0 < p < 100. We note again that the rejection index, p. is computed using all available 
samples. We repeat this process for each of the different correlation times, so, for each correlation 
time. rGM, we compute 1000 rejection indices. 

Results are summarized in Figure 3. The vertical lines indicate the range of values of /> 
obtained over the course of 1000 observations. The horizontal dashes above and below the lines 
indicate the1 maximum and minimum values of p, respectively, obtained over the course of 1000 
observations, while the dots represent their averages. Results shown in the top panel of Figure1 'A 
correspond to the case when there are NMC = 10 Monte Carlo realizations of the simulated time1 

series available,  while results shown in the bottom panel correspond to the case of NMC  =  50. 
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Values of p x 100 for the two scenarios are represented by the blue horizontal lines. In the case of 
NMC = 10, p x 100 ~ IS. while in the case of NMC = 50, p x 100 ~ 4. We note that, as expected, 
the average values of p match the values of p x 100. Since we have ignored any correlation effects in 
computing the rejection index, we also note that the range of values obtained for p over the course 
of 1000 observations increases with increasing correlation time. rGM. In the case of rGM = 1 s. 
the underlying time series are effectively uncorrelated. with the correlation time being equal to 
the sampling interval. Hence, for rGM = 1 s, p deviates only slightly around the mean value of 
p x 100. However, as the correlation time increases, this deviation increases. As discussed earlier, 
this deviation will have no impact on the validation process if correlation effects are taken into 
account in the computation of the rejection threshold. 7. 

Similar to the notion of a rejection index, p. defined in Eq. (8). we define a normalized rejection 
threshold, 7: 

1(P.N^^K 100. (9) 

The rejection threshold, 7 is obtained from 

poo 
a=        fb,nom,M<P^Ni)ds. (10) 

h 

where /binomial denotes the probability distribution function of a binomial random variable with 
parameters p and TV,;: 

h—^-P-N,) = (NA P
k(l-p)N>-kS(s ~ k). (11) 

where S(-) is the Dirac delta function. The number, Nt, of independent samples can be obtained 
from an appropriate estimate of the correlation time through Eq. (3). For our numerical experiment, 
the values of 7 computed from Eq. (9), corresponding to a = 0.01, are shown in red in Figure 3. 
It is evident that the large deviations in p, due mainly to ignoring correlation effects, will have no 
impact on the simulation validation process as long as the correlation effect is taken into account 
in the computation of the rejection threshold. 

From the results shown in Figure 3. we note that as the correlation time increases, the 
normalized rejection threshold, 7, increases in a way similar to the increase observed in the range 
of values covered by the rejection index, p. over the set of 1000 observations. Also, by comparing the 
results shown in the top and bottom panels of Figure 3. corresponding to iVMC = 10 and NMC = 50. 
respectively, we note that the magnitude of the increase in both 7 and the range of values covered 
by p decreases with (1) increasing number of Monte Carlo realizations of the simulated time series 
and (2) decreasing correlation time. For example, in the case of the correlation time being equal to 
one quarter of the duration of the time series, corresponding to the case of rGM = 256 s in Figure 3, 
the value of the normalized threshold, 7, for NMC = 50 is roughly one third that for iVMC = 10. 
Similarly, we would expect a lower value for 7 if the duration of the time series were longer. 
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Figure 3.   Variation of the rejection index, p, and the normalized rejection threshold, 7, with correlation 
time. T. The top panel shows results corresponding to the case when there are NKlc = 10 Monte Carlo 
realizations of the simulated time series, while the bottom panel shows results corresponding to the vase of 
NMC = 50. Both the simulated and observed time series are modeled as first-order Gauss Markov processes 
with matching parameters: in other words, the true hypothesis is the null hypothesis. HQ. corresponding to 
the hypothesis that the simulation is consistent with actual system performance. The normalized rejection 
threshold. 7, corresponding to a = 0.01, is shown in red. The vertical lines indicate the range of values of p 
obtained over the course of WOO observations. The horizontal dashes above and below the lines indicate the 
maxirnum and minimum values of p. respectively, obtained over the course of 1000 observations, whih tin 
dots represent their average.   The blue horizontal lines correspond to p x 100. where p is given by Eq. (2). 
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3.1    HOW MANY MONTE CARLO REALIZATIONS? 

A question often asked is: "How many Monte Carlo realizations are sufficient to validate a 
given modeling and simulation product using the proposed method in this report?" The frank 
answer is: "It depends." In general, it is not possible to promulgate a single number, ATMC, of 
Monte Carlo realizations as a gold standard universally applicable to all simulations. As we saw 
in the discussion of correlated time series above, the duration. T, and the correlation time. r. 
of the time series of the validation metrics play key roles in coming up with acceptable rejection 
thresholds, 7. As we saw in Figure 3, as the correlation time, r, of a given time series becomes larger 
(or equivalently. as the duration, T. of the time series becomes smaller), the normalized rejection 
threshold. 7, may become excessively large. In other words, as r becomes larger (or as T becomes 
smaller), we require more and more of the observed samples to fall within the simulation bounds. 
This may be overly conservative, thus reducing the fidelity of the validation process. We need 
more information—say by observing the time series of a given validation metric for a longer period 
of time—to make a more accurate assessment. Of course, we do not always possess the luxury of 
observing a time series as long as we desire. For example, in the case of tracking radars, the tracked 
target might exit the radar's field of view before sufficient information has been gathered. 

By comparing the two plots in Figure 3, we note that as we increase the number, NMC, 
of Monte Carlo realizations from 10 (top panel) to 50 (bottom panel), the normalized rejection 
threshold, 7, becomes smaller. Hence, for short time series (or time series with large correlation 
times), we may wish to obtain a larger number of Monte Carlo realizations. Of course, there is a 
limit to this strategy. For example, if the particular geometry of a radar tracking scenario happens 
to impose a fundamental limit to the amount of information extractable for the purposes of modeling 
and simulation validation, then the availability of a larger number of Monte Carlo realizations would 
not necessarily increase the fidelity of the validation process. Under these circumstances, we ought 
to instead reject the observation as a reliable anchoring point for the validation of a given modeling 
and simulation product. 

The relationship between the number, Ar
MC, of Monte Carlo realization, the duration. T, 

and the correlation time, r. the rejection threshold, 7, and the model maker's risk, a. is given by 
Eq. (10). which we write more explicitly as 

f°° ( 2 T\ 
a = l  /M

—^JWhi'Tj*- (12) 

For Q = 0.01, plots of the normalized rejection threshold, 7, versus the number, Ni = T/T, 

independent samples for 10. 25, 50. 75. and 100 Monte Carlo realizations are shown in Figure 4. For 
7 = 20%, plots of the model maker's risk, a, versus the number, Ar

MC. of Monte Carlo realizations 
for 1. 5, 10, 25, 50, 75, and 100 independent samples are shown in Figure 5. In both figures, the 
jaggedness in the curves is due to the discrete nature of the problem, which is revealed by the Dirac 
delta function in Eq. (11). The plots in Figures 4 and 5 reveal the monotonic relations that exist 
between a, 7, N{, and NMC- In general, such plots ought to be used to determine the appropriate 
number of Monte Carlo realizations and to assess the efficacy of a particular observation used as a 
modeling and simulation validation anchor. For example, as seen in Figure 5, the model maker's 
risk, a. decreases with increasing number, NMC. of Monte Carlo realizations.   The decrease in a 
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becomes more pronounced as the number of independent samples increases. As revealed in both 
figures, as the number of independent samples becomes smaller, an increase in the number, NMC, of 
Monte Carlo realizations does not necessarily increase the efficacy of the validation process. Under 
such circumstances, validation results would be inconclusive. 
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4.     ACCEPTABILITY CRITERIA 

In this section, appropriate validation metrics necessary for validating the modeling and 
simulation of a generic tracking radar are identified. A list of 26 validation metrics is given in 
Table 1. All validation metrics are functions of time. For convenience, the time dependence of 
the validation metrics has been suppressed in the notation. We have assumed a phased-array 
radar, with the measurement space consisting of the range, r. to the target and the two orthogonal 
direction cosines u and v. The validation metrics can be easily modified to accommodate other 
types of radar such as dish radars. The target state estimation problem has been limited to tin- 
case when the position and velocity vectors are sufficient to characterize the dynamics of the target. 
The list in Table 1 can be extended to accommodate for larger dimensional state vectors as needed. 

The validation metrics listed in Table 1 can be divided into three broad categories: 

1. Macro tracker output validation metrics: Items 1 through 6 in Table 1 are sufficient 
to characterize the general behavior of the tracker output. These validation metrics are 
particularly useful within a multiple sensor configuration where track data are shared among 
the sensors. The total position and velocity estimation errors valid at time index k are given 
by 

<fr*|fc   = rk\k - rk    and 

<*Vfc|J  = Vfc|fc - Vfc, 
(13) 

where r^ and v^, correspond to the updated target position and velocity vector estimates 
valid at time index k, respectively, while rk and v* correspond to the true target position 
and velocity vectors valid at time index A', respectively. The square roots of the traces 
of the position and velocity quadrants of the error covariance matrix provide estimates of 
the size of the error hyper-ellipsoid. A characterization of the shape and orientation of the 
error hyper-ellipsoid, in turn, can be obtained from the so-called normalized estimation error 
squared (NEES) [1]: 

iT 
NEESA. X*|jt - x* p-i 

1 k\k *A-|A- - X* 14 

where xk<k is the updated target state estimate valid at time index k: xk is the true target 
state valid at time index k: and P^f. is the updated state estimation error covariance valid at 
time index A'. The normalized innovation squared (NIS) provides another useful validation 
metric [1]: 

NISi zfc - hfc(xfe|fc. (HkPk\k^Hj + Rk)     [z, -h,(x Hfc|Jfc-l, 15 

where zk is the measurement vector valid at time index A" xk\k-i is the predicted target state 
estimate valid at time index fc; hk(-) is the measurement function valid at time index A: 
Rk is the measurement error covariance valid at time index k; Pk\k-\ is the predicted state 
estimation error covariance valid at time index k; and Hk is the sensitivity matrix valid at 
time index A\ 
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2. Micro tracker output validation metrics: Items 7 through 18 in Table 1 provide a 
more detailed characterization of the behavior of the tracker output. Similar to Eq. (13), the 
components of the target state estimation error vector. dxr, dxu. dxv. dxj-. dxu. and dxy, are 
defined as the difference between the estimated and true values. In addition to the diagonal 
elements of the state estimation error covariance matrix, the cross-diagonal elements can also 
be considered. These are of value particularly when the detailed shape and orientation of 
the error hyper-ellipsoid are of concern. An inspection of the micro tracker output validation 
metrics can potentially aid in limiting the possible sources of simulation inconsistency revealed 
by the macro tracker output validation metrics. 

3. Macro radar front-end output validation metrics: Items 19 through 26 characterize 
the behavior of the tracker input. Many of the inconsistencies observed in the tracker output 
metrics can be traced back to the tracker input. Thus, while not strictly necessary for 
validating the modeling and simulation of a given tracking radar, the macro radar front-end 
output validation metrics often provide invaluable diagnostics as to the cause of the observed 
inconsistencies. 

TABLE 1: Validation Metrics 

ITEM    VALIDATION METRIC SYMBOL CODE NAME 

1 

2 

3 

5 

(i 

7 

8 

9 

10 

11 

Total Position Estimation Error 

Total Velocity Estimation Error 

||dr|| 

Square Root of the Trace of the Upper-Left 3x3 Quadrant     v
/tr[P(l : 3.1 : 3)] 

of the State Estimation Error Covariance Matrix Corre- 
sponding to the Variance of the Total Position Estimation 
Error 

pe 

ve 

tp 

Square Root of the Trace of the Lower-Right 3x3 Quad-     y/tr[P(4 : 6. 4 : 6)] 
rant of the State Estimation Error Covariance Matrix 
Corresponding to the Variance of the Total Velocity Es- 
timation Error 

Normalized Estimation Error Squared (NEES) 

Normalized Innovation Squared (NIS) 

Range Estimation Error 

u Estimation Error 

v Estimation Error 

Range Rate Estimation Error 

u Estimation Error 

tv 

JEES NEES 

NIS NIS 

6xr dxl 

8xu dx2 

Sxv dx3 

Sxj. dx4 

Sx,-. dx5 

continued on next page 
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ontinued from previous page 

ITEM    VALIDATION METRIC SYMBOL CODE NAMI 

5xi dx6 

\fPrr sxl 

vPuu sx2 

s/Kv sx3 

sJPrr sx4 

\Puii sx5 

JPVv sx6 

5zr dzl 

8zu dz2 

8zv dz3 

n, szl 

Ou sz2 

<ir sz3 

SNR SNR 

RCS RCS 

12 v Estimation Error 

VA Standard Deviation of the Range Estimation Error 

14 Standard Deviation of the u Estimation Error 

15 Standard Deviation of the v Estimation Error 

16 Standard Deviation of the Range Rate Estimation Error 

17 Standard Deviation of the u Estimation Error 

IS Standard Deviation of the v Estimation Error 

19 Range Measurement Error 

20 // Measurement Error 

21 v Measurement Error 

22 Standard Deviation of the Range Measurement Error 

2'A Standard Deviation of the // Measurement Error 

24 Standard Deviation of the v Measurement Error 

25 Measured Signal-to-Noise Ratio 

26 Measured Target Radar Cross-Section 

Using the validation procedure discussed in Sections 2 and 'A. results for a given modeling 
and simulation product are summarized in a so-called scorecard. The scorecard contains a listing 
of the rejection indices. /;. and normalized rejection thresholds. 7, for the validation metrics listed 
in Table 1. It is evident that many of the validation metrics in Table 1 are dependent on one 
another. For example, all validation metrics corresponding to the measurement error and state 
estimation error covariances are dependent on the signal-to-noise ratio. By presenting the results 
in the form of a scorecard. correlations among the validation metrics become immediately apparent; 
thus, the scorecard can additionally serve as a diagnostic tool. By considering rejection thresholds 
corresponding to different values of the model maker's risk. a. and by noting the cross-correlation 
between select validation metrics, a validation agent can use a scorecard to declare a given modeling 
and simulation product as valid or invalid. Using numerical examples, we examine the utility of 
such scorecards in the next section. 
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5.     CASE STUDY 

In this section, we devise a controlled numerical experiment to examine the effectiveness of 
the proposed validation algorithm. We choose a satellite as the target and use a phased-array 
radar to track the satellite. The measurement space consists of the range, r. to the target and the 
two orthogonal direction cosines (/ and v. We model the target radar cross-section (RCS) as an 
independent and identically log-normal distributed stochastic process with mean //,« s and variance 
<7~(.s. The signal-to-noise ratio (SNR) valid at time index k can be obtained from [12] 

SNR,.= (»->)'. fSf. ,1.) 
V rk )      1 m2 

where RQ denotes the distance to a perfectly conducting sphere with a cross-sectional area of 
1 m at which the SNR is 0 dB. Here, Ro encompasses contributions from the radar receiver and 
transmitter functions, along with the relevant losses that appear in the radar range equation [1.'5]. 
The measurement error variances induced by the receiver thermal noise are functions of SNR and 
can be expressed as [12] 

where A{ and B, are pre-specified parameters. 

In addition to zero-mean white Gaussian receiver thermal noise, we also include the possible 
effect of colored noise caused by unavoidable random effects present in the radar's operational envi- 
ronment, such as atmospheric propagation effects or random platform motion. For each component 
of the measurement vector (r, u, and <>). we model the temporally correlated noise induced by the 
environment with a first-order Gauss-Markov process: in other words, each component of the mea- 
surement vector has a unique pair of standard deviation and correlation time, parametrizing the 
zero-mean colored Gaussian noise, associated with it. We can include the effect of a "constant" 
random bias by considering a first-order Gauss Markov process with a very long correlation time. 

We simulate a sequence of radar measurements by adding to the truth data a term accounting 
for the zero-mean white Gaussian receiver noise and a term accounting for the environmentally- 
induced zero-mean colored Gaussian noise. Given the sequence of simulated radar measurements, 
along with their associated measurement error variances, we form a track using a textbook extended 
Kalman filter [11]. We use the procedure outlined in Section 5.2.2 of [1] for track initialization. 
We produce results for both the simulation a *'meta-simulation" and the actual observation. To 
examine the effectiveness of the- proposed simulation validation procedure1, we consider the following 

scenarios: 

1. Perfectly matched scenario: In the case of a perfectly matched scenario, the simulation 
and the actual observation results are drawn from the same ensemble. In other words, the true- 
hypothesis is the null hypothesis. Hi), corresponding to the hypothesis that the simulation is 
consistent with actual system performance. For this scenario, we only include the effect of 
uncorrelated receiver thermal noise on the measurements, while excluding the effect of any 
environmentally-induced correlated noise. Results of the simulation validation process are 
shown in Figures 6 and 7. 
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Figure 6. Time series of the macro tracker output validation metrics for the perfectly matched scenario 
plotted relative to the observed time series (shown in blue). The 10 Monte Carlo realizations are shown 
in gray, while the simulation bounds are shown in red. See Table 1 for a definition of symbols. The total 
position error, "pe, " and the square root of the trace of the position quadrant of the error covariance, "tp, " 
are in meters; the total velocity error, "ve." and the square root of the trace of the velocity quadrant of the 
error covariance, "tv," are in meters per second: and the NEES and NIS are dimensionless. In the case of 
a perfectly matched scenario, the simulation is deemed to be consistent with actual system performance. 
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Figure 7. "Scorecard" for the perfectly matched scenario. The gray bars indicate the rejection indices, p, 
for the 26 validation metrics listed in Table 1. The lines indicate the corresponding normalized rejection 
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Plots of the time series for the first six validation metrics listed in Table 1 are shown in 
Figure 6. The time series are plotted relative to the time series of the observed validation 
metric—shown in blue in Figure 6. When simulation results are consistent with actual sys- 
tem performance, we expect the simulated time series of the validation metrics to cluster 
symmetrically around the observed time series. As seen in Figure 6. this is indeed the case 
for the matched scenario. 

The scorecard summarizing the consistency of the simulation results with the observation is 
shown in Figure 7. The gray bars indicate the rejection indices, p. corresponding to the 26 
validation metrics listed in Table 1. The lines indicate the normalized rejection thresholds. 
7, corresponding to a = 0.01 (red), a = 0.05 (green), and a = 0.1 (blue). The variation of 
the normalized rejection ratios from validation metric to validation metric is due to the fact 
that the time series of each validation metric has a unique correlation timescale; hence, the 
number of independent samples is not necessarily the same for all the validation metrics, even 
though the total number of samples might be the same. For a — 0.01, the rejection indices 
for all validation metrics remain below the normalized rejection thresholds. Therefore, for 
a = 0.01, the validation agent may safely declare the simulation results to be consistent with 
the observation. For larger values of a. the validation metrics dxy and Pff ("dx6" and "sx4" 
in Figure 7, respectively) fall above the normalized rejection thresholds, albeit not too far 
above. Acceptance or rejection of the simulation based on these two metrics will depend on 
the validation agent's common sense and judgement. For example, the validation agent may 
have reason to believe that numerical errors might have caused the rejection indices of these 
validation metrics to have fallen below the normalized rejection thresholds corresponding to 
the larger values of a and thus pass the simulation. For this scenario, we would declare the 
simulation as consistent with actual system performance, despite the small transgression of 
the dxi, and P+r validation metrics for large values of the model maker's risk. a. 

Mismatched target scenario: In the case of a mismatched target scenario, the simulation 
and the observation results are statistically matched except for the target model. In other 
words, the true hypothesis is the alternative hypothesis. H\, corresponding to the hypothesis 
that the simulation is inconsistent with the actual system performance. To illustrate, we 
consider the case when the mean value of the observed target RCS is a factor of 2 (3 dB) 
larger than the simulated value. Plots of the SNR and RCS versus time are shown in Figure 8. 
As seen in Figure 8 and as is evident from Eq. (16), the mean value of the observed target SNR 
is also a factor of 2 larger than the simulated value. For this scenario, we also include only 
the effect of uncorrelated receiver thermal noise on the measurements, while excluding the 
effect of any environmentally induced correlated noise. Results of the simulation validation 
process are shown in Figures 9 and 10. 

Plots of the time series for the first six validation metrics listed in Table 1 are shown in 
Figure 9. The simulated absolute position and velocity estimation errors ("pe" and "ve." 
respectively) appear to be consistent with the observation, while the simulated square roots 
of the traces of the position and velocity quadrants of the error covariance matrix ("tp" and 
"tv," respectively) are inconsistent. The NEES and NIS also appear to be consistent. The 
inconsistency in the error covariance is attributable to the mismatch in the simulated and 
observed target SNR. Since the simulated SNR is on average a factor of 2 smaller than the 
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Figure 8. Mismatched target SNH and RCS. The 10 Monte Carlo realizations are shown in gray, whilt  tin 
obsi rued time series are shown in blue. 
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Figure 9. Time series of the macro tracker output validation metrics for the mismatched target scenario 
plotted relative to the observed time series (shown in blue). The 10 Monte Carlo realizations are shown 
in gray, while, the simulation bounds are shown in red. See Table 1 for a definition of symbols. The total 
position error, "pe," and the square root of the trace of the position quadrant of the error covariance, "tp," 
are in meters; the total velocity error, ''ve," and the square root of the trace of the velocity quadrant of the 
error covariance, "tv," are in meters per second: and the NEES and NIS are dimensionless. In the case of 
a mismatched target scenario, the simulation is deemed to be inconsistent with actual system performance. 
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Figure 10. "Scorecard" for the mismatched target scenario. The gray bars indicate the rejection indices, 
p, for the 26 validation metrics listed in Table 1. The lines indicate the corresponding normalized rejection 
thresholds. 7, for a = 0.01 (red), a = 0.05 (green), and a = 0.1 (blue). See Table 1 for a definition of 
symbols. In the case of a mismatched target scenario, the simulation is deemed to be inconsistent with actual 
system performance. 
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observed SNR, the simulated values of the error covariance are more "pessimistic." This 
explains why the simulated square roots of the traces of the position and velocity quadrants 
of the error covariance matrix are above the observation values. As seen from Figure 9. even 
though the simulated covariance matrix is inconsistent with the observed value, the covariance 
mismatch was not sufficient to cause an inconsistency in the NEES and NIS—at least not for 
this case. 

The scorecard summarizing the consistency of the simulation results with the observation is 
shown in Figure 10. Again, we notice that the simulation fails for all the validation met- 
rics that are dependent on SNR—specifically, the validation metrics corresponding to the 
measurement error and the state estimation error covariances. We also note that since the 
modeling and simulation remain exactly the same as in the perfectly matched scenario, the 
normalized rejection thresholds, 7. which are computed based on the simulation results, also 
remain the same. 

3. Mismatched environment scenario: In the case of a mismatched environment scenario, 
the simulation and observation results are statistically matched except for the environmental 
impact. In other words, the true hypothesis is the alternative hypothesis, H\. To illustrate, 
we consider the case when the observed time series of the v component of the measurement 
vector is corrupted by colored noise. The colored noise is modeled with a first-order Gauss- 
Markov process with a standard deviation of 1 msin and a correlation time of 130 s. Plots of 
the measurement errors for this scenario are shown in Figure 11. Results of the simulation 
validation process are shown in Figures 12 and 13. 

Plots of the time series for the first six validation metrics listed in Table 1 are shown in 
Figure 12. As seen in the figure, for this scenario, the simulated total position and velocity 
estimation errors ("pe" and -'ve." respectively) appear to be inconsistent with the observa- 
tion, while the square roots of the traces of the position and velocity quadrants of the error 
covariance matrix ("tp" and "tv." respectively) are consistent. The inconsistency in the 
state estimation error is obviously caused by the bias in the v component of the measure- 
ment error, which is not accounted for by the simulation. Since both the measurement and 
the state estimation error covariances depend mainly on SNR, they are not affected by the 
time-varying bias shown in Figure 11. However, for more severe biases, the state estimation 
error covariance can also be significantly impacted. This is due to the fact that for nonlinear 
problems (such as tracking a ballistic target), the Jacobians in the expressions for the error 
covariance in the prediction and update steps of the extended Kalman filter depend on the 
target state estimate [11], which, in turn, is directly impacted by measurement biases in the 
update step of the Kalman filter. Since the simulated state estimation errors are inconsistent 
with the observation, NEES is also seen to be inconsistent in Figure 12. 

The scorecard summarizing the consistency of the simulation results with the observation 
is shown in Figure 13. Again, we notice that the simulation fails for all validation metrics 
that are impacted by the v measurement error bias—specifically, the validation metrics cor- 
responding to the state estimation error. Also, we again note that since the modeling and 
simulation remain exactly the same as in the previous two scenarios, the normalized rejection 
thresholds. 7, which are computed based on the simulation results, also remain the same. 
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Figure 11.   Mismatched v measurement error.   The 10 Monte Carlo realizations are shown in gray, while 
the observed timi series are shown in blue. 
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Figure 12. Time series of the macro tracker output validation metrics for the mismatched environment 
scenario plotted relative to the observed time series (shown in blue). The 10 Monte Carlo realizations are 
shown in gray, while the simulation bounds are shown in red. See Table 1 for a definition of symbols. The 
total position error, "pe," and the square root of the trace of the position quadrant of the error covari.ance, 
"tp." are in meters: the total velocity error, "ve," and the square root of the trace of the velocity quadrant 
of the error covariance. "tv." are in meters per second; and the NEES and NIS are dimensionless. In the 
case of a mismatched environment scenario, the simulation is deemed to be inconsistent with actual system 
performance. 
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Figure 13. "Scorecard" for the mismatched environment scenario. The gray bars indicaU tin rejection 
indices, p. for the 26 validation metrics listed in Table 1. The lines indicate the corresponding normalized 
rejection thresholds. 7, for a = 0.01 (red), a = 0.05 (green), and a — 0.1 (blue). See Table 1 for a definition 
of symbols. In the case of a mismatched environment scenario, the simulation is deemed to be inconsistent 
with actual system performance. 
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6.    SUMMARY 

The procedure proposed in this report for validating the modeling and simulation of a generic- 
tracking radar is based on a statistical hypothesis test. The two hypotheses are (1) the hypothesis 
that the simulation is consistent with actual system performance the null hypothesis. Ho and 
(2) the hypothesis that the simulation is inconsistent with actual system performance- the alter- 
native hypothesis. H\. The procedure is cognizant of the model maker's risk, a, and the the model 
user's risk. .1 which correspond to the probabilities of Type I and Type II errors, respectively. 

The proposed acceptability criteria arc1 anchored to single discrete-event observations. Since, 
in general, the observed behavior is not repeatable. the probability density function necessary for 
the computation of the model user's risk, /3, is not accessible. However, it is always possible to 
derive any desirable statistics for the simulation results through multiple Monte Carlo realizations; 
thus, it is always possible to derive appropriate rejection thresholds, -y. based on pro-specified values 
of the model maker's risk. a. The model maker's risk is used as an adjustable parameter for the 
validation procedure providing different rejection thresholds. Even though a "receiver operating 
characteristic" or "ROC" curve, providing the trade-off between the model maker's risk. a. and 
the model user's risk. 3, cannot be computed explicitly (due to the unavailability of the probability 
density function of the observed behavior), it is nevertheless understood that smaller values of the 
model maker's risk, a. would give rise to larger values of the model user's risk. Q. Thus, a family 
of rejection thresholds corresponding to different values of the model maker's risk. a. ought to be 
considered in an effort to minimize the model user's risk. 8. 

The modeling and simulation validation procedure proposed in this report is performed inde- 
pendently on a set of validation metrics. A list of 26 validation metrics sufficient for validating the 
modeling and simulation of a phased-array radar tracking a ballistic target is given in Table 1. The 
list can be readily expanded to account for models of tracking nonballistic targets with other types 
of sensors. Conversely, for many applications, not all of the validation metrics listed in Table 1 
need be considered. For example, in a multiple sensor configuration, where only the total position 
and velocity errors in shared track data are of concern, it may be sufficient to examine only the- 
first six items listed in Table 1. 

Many of the validation metrics listed in Table 1 are not statistically independent. For ex- 
ample, the validation metrics corresponding to the measurement error and state estimation error 
covariances are dependent on the signal-to-noise ratio. The correlation among select validation 
metrics can serve1 a-s a diagnostic tool helping to identify the root cause of the failure of a given 
modeling and simulation product. The numerical experiment conducted in Section 5 demonstrates 
the utility of the correlation among select validation metrics. All validation metrics listed in Table 1 
come in the form of time series; hence, any temporal correlation present in the time1 series must 
also be taken into account. 

The steps taken in the proposed validation procedure are summarized as follows. For each 
validation metric, we count the number of samples of the observed time series that fall outside of 
bounds prescribed by NMr Monte Carlo realizations of the simulated time series. The bounds at 
each time index correspond to the minimum and maximum values of the Monte Carlo realizations. 
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Subsequently, if the number of observed samples that are outside of the simulation bounds are 
above a pre-computed rejection threshold, we declare the simulated time series of the particular 
validation metric under scrutiny as inconsistent with the observed time series. For each validation 
metric, the rejection threshold, 7. is computed using Eq. (10). The rejection threshold depends on 
(1) the model maker's risk. a. (2) the number. Ni, of independent samples in the simulated time 
series, and (3) the number. ATMC, of Monte Carlo realizations through the use of Eq. (2). The 
interrelationship between 7, Ni, and JVMC for a given a is explored in Figure 4. 

The number, Ni, of independent samples can be obtained using any of the techniques discussed 
in Section 3. In order to model the outcome of the aforementioned counting process as a binomial 
random variable, the samples must be statistically independent. Statistical independence can be 
ensured by devising a counting procedure that repeatedly divides the time series into uncorrelated 
segments and then picks independent samples from each segment. We argued that the statistical 
dependence that would exist in counting all samples can be accounted for in the computation of 
the rejection threshold. Based on a Monte Carlo analysis, we showed in Section 3 that rejection 
indices, p. computed based on counting all samples, rarely exceed the compensated normalized 
rejection thresholds, 7. We have thus opted for the simpler approach of accounting for the statistical 
dependence of the time series in the computation of the rejection threshold. 

The last step of the proposed validation procedure consists of summarizing the results of 
the above computations for each of the validation metrics listed in Table 1 in a scorecard. The 
scorecard reveals any cross-correlation that exists among select validation metrics—thus serving 
as a diagnostic tool. For each discrete-event observation, the scorecard contains a list of rejection 
indices for the different validation metrics, with each rejection index --expressed as a number be- 
tween 0 and 100 -denoting the ratio of the samples of the observed time series of the associated 
validation metric that are outside of the simulation bounds. Normalized rejection thresholds for the 
different validation metrics—also expressed as numbers between 0 and 100—are also included in the 
scorecard. Furthermore, we require a family of normalized rejection thresholds, corresponding to 
different values of the model maker's risk, a, be included in the scorecard. Examples of scorecards 
are presented in Section 5. Specifically. Figures 7, 10, and 13 illustrate useful graphical representa- 
tions of scorecards obtained for the different scenarios we studied in Section 5. Use of such graphical 
displays of the simulation results is encouraged as they readily reveal the cross-correlation among 
select validation metrics. Thus, using sound judgement and common sense, a validation agent may 
use such scorecards- obtained for various discrete-event observations—to accept or reject a given 
modeling and simulation product. More importantly, the scorecards also serve as a first step to- 
ward identifying problems in a given product and thus pave the road to modeling and simulation 
improvement. 

The modeling and simulation acceptability criteria proposed in this report focused mainly 
on validating the modeling and simulation of the tracking capability of a generic radar. However, 
these criteria can be generalized to include other radar functions -or other types of sensors, such as 
optical or IR sensors. Furthermore, the proposed approach can be readily extended to validating the 
modeling and simulation of the targets themselves. Also, the proposed approach can be extended 
to validating the modeling and simulation of the operational environment of a given sensor, which 
directly impacts the performance of all sensor functions.  All such problems involve the modeling 
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and simulation of time series, and we believe the techniques proposed in this report are well suited 
to the validation of the modeling and simulation of any simulated time series based on single 
discrete-event observations. 
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